Modelling the Spread of River Blindness Disease via the Caputo Fractional Derivative and the Beta-derivative
نویسندگان
چکیده
منابع مشابه
Modelling the Spread of River Blindness Disease via the Caputo Fractional Derivative and the Beta-derivative
Abdon Atangana 1,*,† and Rubayyi T. Alqahtani 2,† 1 Institute for Groundwater Studies, University of the Free State, Bloemfontein 9301, South Africa 2 Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11566, Saudi Arabia; [email protected] * Correspondence: [email protected]; Tel.: +27-78-294-8604; Fax: +27-51-...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولImplicit Fractional Differential Equations via the Liouville–Caputo Derivative
We study an initial value problem for an implicit fractional differential equation with the Liouville–Caputo fractional derivative. By using fixed point theory and an approximation method, we obtain some existence and uniqueness results.
متن کاملOnmemo-viability of fractional equations with the Caputo derivative
*Correspondence: [email protected] Department of Mathematics, Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, Białystok, 15-351, Poland Abstract In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give a necessary condition for fractional viability of a locally closed set with respect to a nonli...
متن کاملFractional Hamilton formalism within Caputo ’ s derivative
In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2016
ISSN: 1099-4300
DOI: 10.3390/e18020040